Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617249

RESUMO

DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Highlights: Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.

2.
Drug Dev Res ; 85(1): e22122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819020

RESUMO

The use of cell growth-based assays to identify inhibitory compounds is straightforward and inexpensive, but is also inherently insensitive and somewhat nonspecific. To overcome these limitations and develop a sensitive, specific cell-based assay, two different approaches were combined. To address the sensitivity limitation, different fluorescent proteins have been introduced into a bacterial expression system to serve as growth reporters. To overcome the lack of specificity, these protein reporters have been incorporated into a plasmid in which they are paired with different orthologs of an essential target enzyme, in this case l-methionine S-adenosyltransferase (MAT, AdoMet synthetase). Screening compounds that serve as specific inhibitors will reduce the growth of only a subset of strains, because these strains are identical, except for which target ortholog they carry. Screening several such strains in parallel not only reveals potential inhibitors but the strains also serve as specificity controls for one another. The present study makes use of an existing Escherichia coli strain that carries a deletion of metK, the gene for MAT. Transformation with these plasmids leads to a complemented strain that no longer requires externally supplied S-adenosylmethionine for growth, but its growth is now dependent on the activity of the introduced MAT ortholog. The resulting fluorescent strains provide a platform to screen chemical compound libraries and identify species-selective inhibitors of AdoMet synthetases. A pilot study of several chemical libraries using this platform identified new lead compounds that are ortholog-selective inhibitors of this enzyme family, some of which target the protozoal human pathogen Cryptosporidium parvum.


Assuntos
Criptosporidiose , Cryptosporidium , Humanos , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/metabolismo , S-Adenosilmetionina/metabolismo , Projetos Piloto , Cryptosporidium/metabolismo , Escherichia coli/genética
3.
J Mol Biol ; 436(7): 168343, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924864

RESUMO

In humans, specific aberrations in ß-globin results in sickle cell disease and ß-thalassemia, symptoms of which can be ameliorated by increased expression of fetal globin (HbF). Two recent CRISPR-Cas9 screens, centered on ∼1500 annotated sequence-specific DNA binding proteins and performed in a human erythroid cell line that expresses adult hemoglobin, uncovered four groups of candidate regulators of HbF gene expression. They are (1) members of the nucleosome remodeling and deacetylase (NuRD) complex proteins that are already known for HbF control; (2) seven C2H2 zinc finger (ZF) proteins, including some (ZBTB7A and BCL11A) already known for directly silencing the fetal γ-globin genes in adult human erythroid cells; (3) a few other transcription factors of different structural classes that might indirectly influence HbF gene expression; and (4) DNA methyltransferase 1 (DNMT1) that maintains the DNA methylation marks that attract the MBD2-associated NuRD complex to DNA as well as associated histone H3 lysine 9 methylation. Here we briefly discuss the effects of these regulators, particularly C2H2 ZFs, in inducing HbF expression for treating ß-hemoglobin disorders, together with recent advances in developing safe and effective small-molecule therapeutics for the regulation of this well-conserved hemoglobin switch.


Assuntos
Dedos de Zinco CYS2-HIS2 , Hemoglobinopatias , Humanos , Linhagem Celular Tumoral , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Hemoglobinopatias/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Biol Chem ; 299(8): 105017, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414145

RESUMO

Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.


Assuntos
DNA-Citosina Metilases , Rotíferos , Animais , Metilação de DNA , DNA-Citosina Metilases/química , DNA-Citosina Metilases/isolamento & purificação , Mamíferos/metabolismo , Rotíferos/classificação , Rotíferos/enzimologia
5.
Nucleic Acids Res ; 51(16): 8447-8462, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439339

RESUMO

The CCCTC-binding factor (CTCF) binds tens of thousands of enhancers and promoters on mammalian chromosomes by means of its 11 tandem zinc finger (ZF) DNA-binding domain. In addition to the 12-15-bp CORE sequence, some of the CTCF binding sites contain 5' upstream and/or 3' downstream motifs. Here, we describe two structures for overlapping portions of human CTCF, respectively, including ZF1-ZF7 and ZF3-ZF11 in complex with DNA that incorporates the CORE sequence together with either 3' downstream or 5' upstream motifs. Like conventional tandem ZF array proteins, ZF1-ZF7 follow the right-handed twist of the DNA, with each finger occupying and recognizing one triplet of three base pairs in the DNA major groove. ZF8 plays a unique role, acting as a spacer across the DNA minor groove and positioning ZF9-ZF11 to make cross-strand contacts with DNA. We ascribe the difference between the two subgroups of ZF1-ZF7 and ZF8-ZF11 to residues at the two positions -6 and -5 within each finger, with small residues for ZF1-ZF7 and bulkier and polar/charged residues for ZF8-ZF11. ZF8 is also uniquely rich in basic amino acids, which allows salt bridges to DNA phosphates in the minor groove. Highly specific arginine-guanine and glutamine-adenine interactions, used to recognize G:C or A:T base pairs at conventional base-interacting positions of ZFs, also apply to the cross-strand interactions adopted by ZF9-ZF11. The differences between ZF1-ZF7 and ZF8-ZF11 can be rationalized structurally and may contribute to recognition of high-affinity CTCF binding sites.


Assuntos
DNA , Dedos de Zinco , Animais , Humanos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA/química , Mamíferos/genética
6.
ACS Chem Biol ; 18(4): 734-745, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37082867

RESUMO

S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host-pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 µM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA-DNA-inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection.


Assuntos
Adenosina , Clostridioides difficile , Proteína-Arginina N-Metiltransferases , DNA Metiltransferases Sítio Específica (Adenina-Específica) , Adenina , Adenosina/análogos & derivados , Adenosina/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/metabolismo , Infecções por Clostridium/tratamento farmacológico , DNA , Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/antagonistas & inibidores
7.
Nucleic Acids Res ; 51(4): 1674-1686, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36660822

RESUMO

ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.


Assuntos
Fatores de Transcrição , Animais , Sequência de Aminoácidos , Inteligência Artificial , Mamíferos/genética , Ligação Proteica , Domínios Proteicos , Dedos de Zinco/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
8.
J Biol Chem ; 299(2): 102885, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626981

RESUMO

ZBTB7A belongs to a small family of transcription factors having three members in humans (7A, 7B, and 7C). They share a BTB/POZ protein interaction domain at the amino end and a zinc-finger DNA-binding domain at the carboxyl end. They control the transcription of a wide range of genes, having varied functions in hematopoiesis, oncogenesis, and metabolism (in particular glycolysis). ZBTB7A-binding profiles at gene promoters contain a consensus G(a/c)CCC motif, followed by a CCCC sequence in some instances. Structural and mutational investigations suggest that DNA-specific contacts with the four-finger tandem array of ZBTB7A are formed sequentially, initiated from ZF1-ZF2 binding to G(a/c)CCC before spreading to ZF3-ZF4, which bind the DNA backbone and the 3' CCCC sequence, respectively. Here, we studied some mutations found in t(8;21)-positive acute myeloid leukemia patients that occur within the ZBTB7A DNA-binding domain. We determined that these mutations generally impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in ZF1 and ZF2, and the least from a frameshift mutation in ZF3 that results in partial mislocalization. Information provided here on ZBTB7A-DNA interactions is likely applicable to ZBTB7B/C, which have overlapping functions with ZBTB7A in controlling primary metabolism.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Domínios Proteicos/genética , Ligação Proteica/genética
9.
J Med Chem ; 66(1): 934-950, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36581322

RESUMO

Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 µM and KD ∼ 0.2 µM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors.


Assuntos
Clostridioides difficile , Metiltransferases , Animais , Humanos , Metiltransferases/química , Adenosina/metabolismo , Adenina/farmacologia , Adenina/metabolismo , S-Adenosilmetionina/metabolismo , DNA/metabolismo , Proteína-Arginina N-Metiltransferases , Mamíferos/metabolismo
10.
Curr Opin Struct Biol ; 75: 102433, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914495

RESUMO

Mammalian genomes are methylated on carbon-5 of many cytosines, mostly in CpG dinucleotides. Methylation patterns are maintained during mitosis via DNMT1, and regulatory factors involved in processes that include histone modifications. Methylation in a sequence longer than CpG can influence the binding of sequence-specific transcription factors, thus affecting gene expression. 5-Methylcytosine deamination results in C-to-T transition. While some mutations are beneficial, most are not; so boosting C-to-T transitions can be dangerous. Given the role of DNMT3A in establishing de novo DNA methylation during development, it is this CpG methylation and deamination that provide the major mutagenic impetus in the DNMT3A gene itself, including the R882H dominant-negative substitution associated with two diseases: germline mutations in DNMT3A overgrowth syndrome, and somatic mutations in clonal hematopoiesis that can initiate acute myeloid leukemia. We discuss recent developments in therapeutics targeting DNMT1, the role of noncatalytic isoform DNMT3B3 in regulating de novo methylation by DNMT3A, and structural characterization of DNMT3A in various configurations.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Mamíferos , Animais , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mutação , DNA Metiltransferase 3B
11.
Biochemistry ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35605980

RESUMO

PCIF1 and FTO are a pair of human mRNA cap-specific modification enzymes that have opposing activities. PCIF1 adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am), when Am is the cap-proximal nucleotide. FTO removes the N6-methyl group from m6Am. In addition, FTO has a demethylase activity on a broad spectrum of various RNA substrates, as well as on DNA N6-methyldeoxyadenosine (m6dA). While the existence of m6dA in mammalian DNA remains controversial, we show here that PCIF1 has significant methylation activity on single stranded DNA deoxyadenosine, double stranded RNA/DNA hybrids, and double stranded DNA, though with lower catalytic efficiency than that on its preferred RNA substrate. PCIF1 has activities in the order ssRNA > RNA/DNA hybrid > ssDNA > dsDNA. We discuss the implications of PCIF1 generation, and FTO removal, of DNA adenine methylation.

12.
DNA Repair (Amst) ; 113: 103306, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255310

RESUMO

Cytosine to thymine (C>T) somatic mutation is highly enriched in certain types of cancer, and most commonly occurs via deamination of a 5-methylcytosine (5mC) to thymine, in the context of a CpG dinucleotide. In theory, deamination should occur at equal rates to both 5mC nucleotides on opposite strands. In most cases, the resulting T:G or G:T mismatch can be repaired by thymine DNA glycosylase activities. However, while some hotspot-associated CpG mutations have approximately equal numbers of mutations that resulted either from C>T or G>A in a CpG dinucleotide, many showed strand bias, being skewed toward C>T of the first base pair or G>A of the second base pair. Using the IDH2 Arg140 codon as a case study, we show that the two possible T:G mismatches at the codon-specific CpG site have differing effects on transcription factor ETS1 binding affinity, differentially affecting access of a repair enzyme (MBD4) to the deamination-caused T:G mismatch. Our study thus provides a plausible mechanism for exclusion of repair enzymes by the differential binding of transcription factors affecting the rate at which the antecedent opposite-strand mutations occur.


Assuntos
Endodesoxirribonucleases , Timina , Endodesoxirribonucleases/metabolismo , Timina/metabolismo , Taxa de Mutação , DNA/metabolismo , Citosina/metabolismo , Códon , Reparo do DNA
13.
J Biol Chem ; 298(4): 101751, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189146

RESUMO

The phosphorylated RNA polymerase II CTD interacting factor 1 (PCIF1) is a methyltransferase that adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am) when Am is the cap-proximal nucleotide. In addition, PCIF1 has ancillary methylation activities on internal adenosines (both A and Am), although with much lower catalytic efficiency relative to that of its preferred cap substrate. The PCIF1 preference for 2'O-methylated Am over unmodified A nucleosides is due mainly to increased binding affinity for Am. Importantly, it was recently reported that PCIF1 can methylate viral RNA. Although some viral RNA can be translated in the absence of a cap, it is unclear what roles PCIF1 modifications may play in the functionality of viral RNAs. Here we show, using in vitro assays of binding and methyltransfer, that PCIF1 binds an uncapped 5'-Am oligonucleotide with approximately the same affinity as that of a cap analog (KM = 0.4 versus 0.3 µM). In addition, PCIF1 methylates the uncapped 5'-Am with activity decreased by only fivefold to sixfold compared with its preferred capped substrate. We finally discuss the relationship between PCIF1-catalyzed RNA methylation, shown here to have broader substrate specificity than previously appreciated, and that of the RNA demethylase fat mass and obesity-associated protein (FTO), which demonstrates PCIF1-opposing activities on capped RNAs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Nucleares , Capuzes de RNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Viral/metabolismo
14.
Epigenetics ; 17(9): 970-981, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523387

RESUMO

Epigenetically targeted therapeutic development, particularly for SAM-dependent methylations of DNA, mRNA and histones has been proceeding rapidly for cancer treatments over the past few years. However, this approach has barely begun to be exploited for developing new antibiotics, despite an overwhelming global need to counter antimicrobial resistance. Here, we explore whether SAM analogues, some of which are in (pre)clinical studies as inhibitors of human epigenetic enzymes, can also inhibit Clostridioides difficile-specific DNA adenine methyltransferase (CamA), a sporulation regulator present in all C. difficile genomes sequenced to date, but found in almost no other bacteria. We found that SGC0946 (an inhibitor of DOT1L), JNJ-64619178 (an inhibitor of PRMT5) and SGC8158 (an inhibitor of PRMT7) inhibit CamA enzymatic activity in vitro at low micromolar concentrations. Structural investigation of the ternary complexes of CamA-DNA in the presence of SGC0946 or SGC8158 revealed conformational rearrangements of the N-terminal arm, with no apparent disturbance of the active site. This N-terminal arm and its modulation of exchanges between SAM (the methyl donor) and SAH (the reaction product) during catalysis of methyl transfer are, to date, unique to CamA. Our work presents a substantial first step in generating potent and selective inhibitors of CamA that would serve in the near term as chemical probes to investigate the cellular mechanism(s) of CamA in controlling spore formation and colonization, and eventually as therapeutic antivirulence agents useful in treating C. difficile infection.


Assuntos
Clostridioides difficile , Metiltransferases , Adenina/farmacologia , Antibacterianos , Camassia , Clostridioides difficile/genética , DNA , Metilação de DNA , Epigênese Genética , Histonas/genética , Humanos , Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro
15.
Nucleic Acids Res ; 49(20): 11629-11642, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34086966

RESUMO

MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer - a major lesion of UV radiation-induced products - or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 - two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.


Assuntos
Adenina/análogos & derivados , DNA/metabolismo , Metiltransferases/metabolismo , Mutação , Adenina/metabolismo , Sítios de Ligação , DNA/química , DNA/genética , Metilação de DNA , Humanos , Metiltransferases/química , Ligação Proteica
16.
Nat Commun ; 12(1): 3436, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103525

RESUMO

Clostridioides difficile infections are an urgent medical problem. The newly discovered C. difficile adenine methyltransferase A (CamA) is specified by all C. difficile genomes sequenced to date (>300), but is rare among other bacteria. CamA is an orphan methyltransferase, unassociated with a restriction endonuclease. CamA-mediated methylation at CAAAAA is required for normal sporulation, biofilm formation, and intestinal colonization by C. difficile. We characterized CamA kinetic parameters, and determined its structure bound to DNA containing the recognition sequence. CamA contains an N-terminal domain for catalyzing methyl transfer, and a C-terminal DNA recognition domain. Major and minor groove DNA contacts in the recognition site involve base-specific hydrogen bonds, van der Waals contacts and the Watson-Crick pairing of a rearranged A:T base pair. These provide sufficient sequence discrimination to ensure high specificity. Finally, the surprisingly weak binding of the methyl donor S-adenosyl-L-methionine (SAM) might provide avenues for inhibiting CamA activity using SAM analogs.


Assuntos
Adenina/metabolismo , Clostridioides/enzimologia , DNA Bacteriano/química , Conformação de Ácido Nucleico , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Pareamento de Bases , Sequência de Bases , Coenzimas/metabolismo , Modelos Moleculares , Motivos de Nucleotídeos , S-Adenosil-Homocisteína/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , Especificidade da Espécie , Especificidade por Substrato
17.
Nucleic Acids Res ; 49(9): 5084-5094, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877329

RESUMO

DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPß binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPß binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.


Assuntos
Pareamento Incorreto de Bases , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/química , Citosina/química , DNA/química , DNA/metabolismo , Reparo do DNA , Guanina/química , Humanos , Mutação , Ligação Proteica , Domínios Proteicos , Timina/química
18.
J Biol Chem ; 296: 100270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428944

RESUMO

RNA methylations of varied RNA species (mRNA, tRNA, rRNA, non-coding RNA) generate a range of modified nucleotides, including N6-methyladenosine. Here we study the enzymology of three human RNA methyltransferases that methylate the adenosine amino group in diverse contexts, when it is: the first transcribed nucleotide after the mRNA cap (PCIF1), at position 1832 of 18S rRNA (MettL5-Trm112 complex), and within a hairpin in the 3' UTR of the S-adenosyl-l-methionine synthetase (MettL16). Among these three enzymes, the catalytic efficiency ranges from PCIF1, with the fastest turnover rate of >230 h-1 µM-1 on mRNA cap analog, down to MettL16, which has the lowest rate of ∼3 h-1 µM-1 acting on an RNA hairpin. Both PCIF1 and MettL5 have a binding affinity (Km) of ∼1 µM or less for both substrates of SAM and RNA, whereas MettL16 has significantly lower binding affinities for both (Km >0.4 mM for SAM and ∼10 µM for RNA). The three enzymes are active over a wide pH range (∼5.4-9.4) and have different preferences for ionic strength. Sodium chloride at 200 mM markedly diminished methylation activity of MettL5-Trm112 complex, whereas MettL16 had higher activity in the range of 200 to 500 mM NaCl. Zinc ion inhibited activities of all three enzymes. Together, these results illustrate the diversity of RNA adenosine methyltransferases in their enzymatic mechanisms and substrate specificities and underline the need for assay optimization in their study.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Metiltransferases/genética , Proteínas Nucleares/genética , RNA Ribossômico 18S/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina/genética , Humanos , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/genética , Metilação , Metiltransferases/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Nucleares/química , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
19.
Trends Biochem Sci ; 46(3): 175-183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077363

RESUMO

The leading cause of mutation due to oxidative damage is 8-oxo-2'-deoxyguanosine (8-oxoG) mispairing with adenine (Ade), which can occur in two ways. First, guanine of a G:C DNA base pair can be oxidized. If not repaired in time, DNA polymerases can mispair Ade with 8-oxoG in the template. This 8-oxoG:A can be repaired by enzymes that remove Ade opposite to template 8-oxoG, or 8-oxoG opposite to Cyt. Second, free 8-oxo-dGTP can be misincorporated by DNA polymerases into DNA opposite template Ade. However, there is no known repair activity that removes 8-oxoG opposite to template Ade. We suggest that a major role of N6-methyladenine in mammalian DNA is minimizing incorporation of 8-oxoG opposite to Ade by DNA polymerases following adduct formation.


Assuntos
Reparo do DNA , Guanina , Animais , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo
20.
Microbiology (Reading) ; 166(11): 1047-1064, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33085588

RESUMO

Homologous recombination plays key roles in fundamental processes such as recovery from DNA damage and in bacterial horizontal gene transfer, yet there are still open questions about the distribution of recognized components of recombination machinery among bacteria and archaea. RecBCD helicase-nuclease plays a central role in recombination among Gammaproteobacteria like Escherichia coli; while bacteria in other phyla, like the Firmicute Bacillus subtilis, use the related AddAB complex. The activity of at least some of these complexes is controlled by short DNA sequences called crossover hotspot instigator (Chi) sites. When RecBCD or AddAB complexes encounter an autologous Chi site during unwinding, they introduce a nick such that ssDNA with a free end is available to invade another duplex. If homologous DNA is present, RecA-dependent homologous recombination is promoted; if not (or if no autologous Chi site is present) the RecBCD/AddAB complex eventually degrades the DNA. We examined the distribution of recBCD and addAB genes among bacteria, and sought ways to distinguish them unambiguously. We examined bacterial species among 33 phyla, finding some unexpected distribution patterns. RecBCD and addAB are less conserved than recA, with the orthologous recB and addA genes more conserved than the recC or addB genes. We were able to classify RecB vs. AddA and RecC vs. AddB in some bacteria where this had not previously been done. We used logo analysis to identify sequence segments that are conserved, but differ between the RecBC and AddAB proteins, to help future differentiation between members of these two families.


Assuntos
Bactérias/genética , Exodesoxirribonuclease V/genética , Exodesoxirribonucleases/genética , Recombinação Genética/genética , Sequência de Aminoácidos , Bactérias/classificação , Sequência de Bases , Sequência Conservada , DNA Bacteriano/genética , Evolução Molecular , Transferência Genética Horizontal/genética , Filogenia , Recombinases Rec A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...